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ABSTRACT

A problem of Gaifman about strongly and weakly defined Boolean terms is
solved by finding a Boolean algebra % with a complete subalgebra & such
that some element of & not in & can be obtained from elements of & by meets
and joins in the normal completion of Z.

Introduction

In this paper we solve a problem posed by Gaifman in his paper [1, §0].
Roughly speaking, the problem is as follows. Let & be a Boolean algebra, ¢ its
normal completion, and I an assignment of values in &% to some variables. Let {
be a Boolean term on these variables (i.e., constructed from them by the unary
operation 1 and the infinitary operations A, V), and suppose that the value of
¥ as computed in % under the assignment I (interpreting =1, A, V as complement,
meet and join in %) turns out to be an element of #. Does there always exist a
Boolean term ¢ such that (1) ¢ is equivalent to ¥, and (2) ¢ is defined in (%, I)?

Part (1) means that ¢ and ¥ get the same value in all assignments into complete
Boolean algebras. Part (2) means that the value of ¢ under I can be computed
directly in 4, so that all meets and joins needed in the process exist in 4.

In §2, we give an example showing that such a ¢ need not always exist. But in
§3-4, we prove that the answer is affirmative if we restrict ourselves to pairs
(4#,1) satisfying a simple regularity condition. A more precise statement of the
problem and results is given in §1, where the basic terminology and notations
concerning Boolean terms are explained.
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Our set-theoretical notations are standard: ~, N, U, (), U are the usual
operations on sets. A field of subsets of X is, by definition, a set & of subsets of X
such that X e # and 4,BeF >X ~A4, ANB, AU Be#. For us, 2 = {0,1}
and o = {0,1,2,3,--}.

The symbols 1, A, v, A, V, are used either to denote the operations of a
Boolean algebra (and then we often write 1 # A%, \/#), or as symbolic operations
(connectives) on Boolean terms. V, 3 are sometimes used as abbreviations of
English phrases (for all, there exists).

The main results of the paper, which is a part of the author’s Ph.D. thesis
prepared at the Hebrew University of Jerusalem under the direction of Prof. H.
Gaifman, were announced in [3]. I wish to thank Prof. Gaifman for his interest
and advice throughout the work.

The paper can be understood by any reader having an elementary knowledge

of Boolean algebras and topology.

1. Preliminaries and formulation of the problem and results

Our terminology and notation differ slightly from Gaifman’s. Let D be a fixed
set (in [1] D is taken as an ordinal 6). Consider variables p;, ie D, which will
assume values in arbitrary Boolean algebras. The Boolean terms (B.t's) over D
are defined inductively by:

p;isa B.t. forieD;

if ¢ is a B.t. then —1¢ is a B.t.;

if X is a set of B.t’s, then A X and VV X are B.t’s.

One defines ¢ Ay =A{$¥}, ¢Vvy=V{gy}, (d-¥) =719 VY,
(poy) =(d->¥)A Y- ¢)

A valuation over D is a pair (4, I) consisting of a Boolean algebra (B.a.) # and
a function I: D— . D will usually be fixed and all B.t’s and valuations are
understood to be over D. One is tempted to define the value | ¢ | = | ¢ 4., of 2
B.t. in a valuation by the following equations:

p; = I(i) for ieD;

1=l = =%l
[AX] = A&8.x|v| and dually for v X.

If # is complete, these equations determine a value in & for each B.t. In the
general case we may agree that ¢ is not defined in (%,I) when the computation
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of || ¢ || 2.1 by means of the above equations fails at a point because some meet or
join does not exist in 4. If ¢ is defined in (#,I) then “ ¢ ”@ 1 18 a certain element
of &, and we say for emphasis that ¢ is strongly defined in (%, I). An exact de-
finition by induction on ¢ is left to the reader.

1.1. LeEMMA. Let#,,%, be B.a’s,1: D — %, and h a complete homomorphism
of B, into B,. If the B.t. ¢ is strongly defined in (%,,1), then ¢ is strongly
defined in (#,,h o I), and h( “ ¢l|g,1,,) = “ ¢||g2,,,o I

Proor. Obvious by induction on ¢.

Recall that #, is called a regular suta’gebra of %, when it is a sutalgetra
and the inclusion embedding of %, in %, is complete. A subalgebra #, of 4, is
called dense when every be 4, is a join in %, of members of #,. Every dense
subalgebra is regular. By a normal completion of 2 we mean a complete B.a. € of
which & is a dense subalgebra. A well-known theorem (see [2, §35]) states that
every B.a. 4 has a normal completion, and if ¢,, €, are normal completions of #
then an isomorphism of €, and %, exists which acts as the identity on 4.

We shall use the following known property of the normal completion:

1.2. Let # be a B.a., € a normal completion of # and €' a complete B.a.
Every complete homomorphism j: # — %' has a unique extension to a complete
homomorphism J: € - €'. If j is one-one, so is J.

ProoF. For any ce% let R, = {xe%|x < c}. Define J by J(c) = V*J'R,
for any ce¥. Using the facts that xeR,, yeR_,=(x Ay =0 in %) and that
V&R, UR.,) =1 for all ce¥, one easily concludes that J preserves comple-
ments. Now suppose that ¢ = A¥ 4(4 =&, ce%). Then in €', J(c) = V'R,
while Age4J(@) = Agea Vi'R,. But aed=>c<a=R, SR> J(c) < J(a)
so clearly J(c) < AacqJ(a). To prove equality it suffices to prove that in ¢,
J@) v I Ngea J@) = 1,16, J©) V Vaea J(T1a) = 1; equivalently,
VJj"(R,VU, . 4R,,) = 1. Since j is complete it is enough to show that
V&R,V U,c4R5,) =1, but this is true because # is dense in % and
¢V V,.ca1a =1 in €. Thus J preserves arbitrary meets, and hence is complete,
The uniqueness of J is obvious.

If j is one-one so is J because if ce %, ¢ # 0, then there is some xeR, such
that x # 0, and so J(c) = j(x) > 0. This completes the proof.

Let us say that a B.t. ¢ is weakly defined in the valuation (%, 1) when || ¢ | ;€ #
where % is any normal completion of # (the choice of ¥ does not matter because
¥ is essentially unique).
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Note that by 1.1, if ¢ is strongly defined in (%,I) then “q&"w,, = ]|¢”v_,
(% being the normal completion of #) and so ¢ is weakly defined. When D is
finite every B.t. is strongly, hence weakly, defined in every valuation over D.
But when D is infinite it is easy to find valuations in which some B.t’s are weakly
but not strongly defined.

Let ¢, § be B.t’s. We write ¢ = ¢ and say that ¢, Y are equivalent when
| @] = | ¥ | in every valuation in which both are (strongly) defined; equivalently,
@] = || in every valuation (#,1I) such that & is complete. When ¢ = A &
(ie, | @ = 1 always) we write + ¢. More generally, let I' U {¢} be a set of
B.t’s. We write I" I ¢ (read: ¢ is a (Boolean) consequence of I') when F A '~ ¢;
equivalently, when | ¢|| = 1 in every valuation (4%,I) such that # is complete
and “ v “ a1 = 1 for all y eI'. We shall use only some obvious properties of the

relation F.

Given a subset A of a B.a. & we let [4]5 © be the smallest C 2 A4 such that C
is the underlying set of 2 < oo-subalgebra (also called complete subalgebra)
of &; i.e., such that C is closed under 1® and under all meets and joins existing
in #. We shall usually identify subalgebras with their underlying sets when the
common superalgebra is fixed. Note that a < co-subalgebra # of a complete
B.a. % is a regular subalgebra of %, and is complete as a B.a. in itself.

This completes the general preliminaries. The problem posed by Gaifman was
whether (*) below is true for all valuations (%, I).

(*) For every B.t.  weakly defined in (#,I) there is a B.t. ¢ such that
¢ = ¢ and ¢ is strongly defined in (%, I).

The question depends on the set D (Gaifman’s §) over which B.t’s are con-
sidered, and the answer is obviously affirmative for finite D.

Our first main result is that when D is infinite (*) is not always true,

We shall prove this for D = w x w (so that the variables are p,,,; m,n < @),
but since every infinite set has a countably infinite subset it is not hard to con-
clude that (*) is somestimes fales for every infinite D. Specifically we shall prove:

1.3. THEOREM. There is a valuation (%,I) over w X @ in which the B.t.
\/» AmDms is weakly defined, but no B.t. equivalent to it is strongly defined.

Our second main result is that (*) is true when the valuation (4, I) is regular:
A valuation (#,]) is called reduced when % is generated in the < co-sense by
range (I), i.e., # = [range (I)]3®. (£,]) is called regular when [range (I)]5* is
a regular subalgebra of #. Clearly every reduced valuation is regular.
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1.4, TazoreM. If(4,I)is a regular valuation then it satisfies (*).

Theorems 1.3 and 1.4 are the main results but we shall prove Theorem 1.3
via the following assertion which is of interest in itself.

1.5. Thereexists a B.a. # with a < co-subalgebra &, elements P,,,(m,n < )
of & and an element Q of F such that Q ¢ & but the equation Q=\ A, P¥ holds
in the normal completion € of & . ,

(The proof will give & as a field of sets and & as a subfield.)

To get 1.3 from this, define the valuation (#,I) as follows: & = &, and
I: 0 x o> & is defined by I(m,n) = P,,,. Let € be the normal completion of %.
Then by 1.5, the B.t. y = \/,, A DPnn has the value Q in (¥,1I) and so is weakly
defined in (&,1) since Qe %. But let ¢ be any B.t. strongly defined in (&, I).
Then clearly || ¢ ,€ & since & 2 [range ()]s ®and so |¢]s,=|¢ ], # s
hence, ¢ # ¥, proving Theorem 1.3.

In §2, w2 prove 1.5, §3 coatains the proof of Theorem 1. 4 for reduced valua-
tions, and §4 proves Theorem 1.4 in the general case of regular valuations.

2. Example of a field of sets

We shall consider fields of subsets of the space “2={x| x: @ —2}. A basic set is
one of the form B = {x€“2| (Vi < n)x(i) = §;}, where (4, I i <n) is any finite
sequence of zeros and ones. An elementary set is a finite union of basic sets.
The collection & of all elementary sets is a field (of subsets of “2). An open set is
a (countable) union of basic sets. This makes “2 a topological space (the Cantor
space), in which the closed sets are the intersections of sequences of elementary
sets, and cl(4)={E|Ee &, E =2 A} (**cl” is the closure operation). Recall that
a closed set is nowhere-dense iff it has no interior points, and that a perfect set is a
closed nonempty set having no isolated point.

To prove 1.5 we shall make use of sets Q,0',0,(n < w), R, (n,k < w) (all
subsets of “2) satisfying the following.

21. (1) ¢=U,Q,and Q' =“2~0;
(2) for each basic set B, Q N B and Q' N B are uncountable;
(3) the sets Q, are perfect, nowhere dense and pairwise-disjoint;
(4) for each fixed n, the sets R,, are countable, pairwise-disjoint and
satisfy cl(R,,) = Q,-
We begin by showing the existence of sets satisfying 2.1. It is not hard to see,
using Baire’s category theorem, that if Q is any dense set which is the union of a
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sequence of perfect nowhere-dense sets, then Q', Q,, R, (1, k < ) can be found so
that 2.1 holds. But the quickest way is to give a particular example. Let
Q = {xe“2|In(Ym = n) (x2m) = 1)}, Q' =“2~Q, Qq = {x€ 2| Vm(x(2m)
= 1)} and for n > 0,

Q, = {x€®2|(¥m = n) (x(2m) = 1) and x(2n — 2) = 0}.
Then (1)-(3) of 2.1 are easily verified. Next let:
R, = {x€Q,] the sequence (x(1), x(3), x(5), X(7), ---)

has a tail of the form 0---010---010.-- 01 --- where in each block 0 occurs (con-
secutively) k times}.

Then 2.1(4) holds too.

From now on we consider any fixed sets Q,Q’ etc., so that 2.1 holds. Since the
sets Q, are closed, each has the form Q, = (1,,P,,, where P,,€ & for all m,n.
Thus Q@ = U, N, P,..

Let # be the smallest field of subsets of “2 that contains all elementary sets,
Q and R, for all n, k. In order to prove the assertions of 1.5 (of course, & and F
are regarded as B.a’s with the set operations ~, N, U so that < coincides with
set-inclusion) we need only prove the following (note that Q¢ & this is clear
from 2.1).

2.2. &isa < oco-subalgebra of &,

23. Q= VEANEP,, where € is the normal completion of £

We begin with the proof of 2.2. Let # be the ideal in F generated by
{R,,k] n,k < w}, and for 4,Be # write A ~ B for: A is congruent to B modulo &,
Le., the symmetric difference A A B can be covered by a finite number of R,,’s
(and hence is countable).

LEMMA 1. For each Ae% there are E,E'€ & such that ANQ~ENQ
and ANQ' =~ E' NQ’.
This is easily proved by induction on the generation of 4 by ~, N, U from

¢ U{0} U{R,]|n,k < w}. The following lemma contains the heart of the proof
of 2.2.

Lemva 2. If {E,|n < w} € & AeF and A is the meet in F of
{E,|n<w}U{Q}, thenthereisan Ec & suchthatE = A\ % E,and A=ENQ.

n<w
ProOOF. By Lemma 1 we can choose E€ & sothat ANQ~ENQ.But A< Q
so ARENQ. Put Ny =(ENQ)~A4, N, = A~(ENQ). Then N,,N, are
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countable and €#%. Now A2(ENQ)~N; =EN(Q ~N,), and by 2.1(2)
0 ~ N, intersects every basic set. Therefore cl(4) 2 cl(E N(Q ~ N,)) = E. But
A S E, for all n, hence cl(4) = N, E, (since n,,E,, is closed), and so E =(,E,.
Thus E is a lower bound in & of {E, | n < w}. Let E’' € & be another lower bound.
Then E’'NQ is a lower bound in & of {E,|n <} U{Q}, hence E' NQ < A.
But AS(ENQUN,,s0 ENQS(ENQ)UN,,(E'~E)YNQ < N,. But by
2.1(2) Q intersects each nonempty open set in an uncountable set, whereas N, is
countable. Therefore E’ ~ E = ¢, E' < E. This shows that E is the greatest
lower bound of {E,| n < w} in &.

To complete the proof of the lemma we must show that 4 = E N Q, i.e., that
Ny =N, = (. Since ENQ is a lower bound in & of {E,|n<w}u{Q},
ENQc A Hence Ny = g and A=(ENQ)UN,. Since 4 < Q and
N, =A ~(En Q) we see that N, = Q and N, is disjoint from E. Also
N,cA<,E,.

We shall now find the general form of elements of #. Let S be a finite union of
R,;’s. Consider any 4 € #. By induction on the generation of A from

U {0} U {Ry|nk < w}

it is directly seen (noting the disjointness of the R,;’s) that S N A is a finite union
of sets of theform R,, NE (n,k < w,E€ &).If A€ # then for some S as above,
A = SN A4 and therefore 4 has the form J;,, (R,x, N E;) where m < o, and
fori < m:n,k; < w, E;€ &. Conversely, every set of this form is (of course) in Z.

In particular put N, = U, (R, N E;) with m etc. as above, and suppose
for contradiction that N, # . Without loss of generality, m > 0 and
Ry NEy # . Combining this with the above properties of N, we get:
& # Rygo NEo= N, = (N,E)NQN(“2~E). Let k<o be larger than k;
for all i <m. Then R, is disjoint from R, ,, for all i < m and hence from N,.
Also Cl(R, ;) = cl(Ruy) = Q,» hence cl(R,x, NEg) = cl(R,, NEp) = 0, NE,
(because E, is open and closed). Now, (N, E,) N (“2 ~ E) is a closed set including
Ry, N Ep, hence it includes also R, N E,. Moreover, R, NE, # &=
Cl(Rpx N Eg) # &= Ry NEg # &, and R, S 0,y S Q. Thus, & # R,
NE, < (N,E,) NQ N(“2 ~ E). We see that R, , NE, is a lower bound in & of
{E,| n < @} U {Q} which is nonempty and disjoint from E and from N,. But
A= EUN,, so R, NE, is disjoint from 4, and 4 U (R, NE,) is a lower
bound of {E,|n < w} U {Q} which is strictly greater than A4, in contradiction to
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the assumption of Lemma 2. Thus N, = J, A = E N Q and the proof of the
lemma is complete.

LemMmA 3. Like Lemma 2 with Q replaced by Q’.

Proor. In the proof of Lemma 2 up to the point where it is concluded that
N, = ¥, write everywhere “Q’>’ for ““Q”’. The resulting argument is valid as it
stands. We conclude that 4 = (E N Q') UN, where N, e %. But 4 < Q’, hence
N, = @Q'. On the other hand N, is included in a union of R,;’s, so N, € Q, and
thus N, = ¢ since Q' = ®2 ~ Q. This completes the proof

The proof of 2.2 is now easy. & is a subfield, hence a subalgebra, of #. To
see that it is a < co-subalgebra, it suffices to prove (remembering that & is
countable) that if {E,|n <o} < & AeZF and A = N’ E,, then A€ &. Butif A
is the meet in & of {E,| n < w} then 4 N Q is the meetin F of {E,| n < o} U {Q}
and 4 NQ’ is the meet of {E,|n <} U{Q’}. By Lemmas 2 and 3 the meet
A E, exists (call it E) and satisfies ANQ =ENQ, ANQ' = ENQ’, and
hence A = Ecé. Q.E.D.

To prove 2.3 let % be the normal completion of &, Recall that the sets P,,,€ &
have been chosen so that for all n, Q, = ,,P,,. Put g, = NP, and let us
“‘compute’’ g, (since & is a dense subalgebra of €, each member ¢ of € can be
represented by a subset of &, namely by {xe & ]x < ¢}; computing ¢ means
finding this set):

{AdeF|A<q,} ={AeF|Vm(A S P,,)} = {deF|A < Q,}.
LeMMA 4. Forany AeF, A < Q, iff for some m, A & U, <, R

Proor. Since U,.,R, S Q, always, one direction is trivial. Now let 4 €&,
A<= Q, By Lemma 1 thereis an Ec & such that ANQ =~ ENQ. But A= so0
A ~ EN Q. As in the beginning of the proof of Lemma 2, this implies cl(4) = E.
But @, is closed and = 4; hence, Q, = E. Since Q, is nowhere dense, E = ¢, so
A =~ . Thus A4 is covered by a finite union R, ; V- UR,;,Y--. But when
n;#nwehave R,, NA<=Q, NQ, = J, hence 4 is covered by a finite union
of sets R,;. Q. E.D.

It is worth noting that by Lemma 4 (or by 2.2) Q,¢ & for each n.

Returning to g, = A¥P,, we see that g, = \/*{4eF|A<c Q,} = VER,
Hence \/ %, = V¥ .R,:. If we prove that Q = \/¥,R,; we shall get 0= \/¥g,
= /¢ A2P,., proving 2.3. Since & is a regular subalgebra of % it suffices to
prove:
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LemMA 5. Q = /7R,

Proor. Q 2 R, for all n,k. Now let Ae#, A=2R,, for all n,k. We shall
show that A 2 Q. By Lemma 1, there is an E€ & such that A NQ ~ EN Q. Let
N, =(EnNQ ~(ANQ) and N, =(4NQ) ~(ENQ), so that N,N, e 4.
Since R,, < A for all n,k it follows that N; = 4, hence N, ANQ, N, = .
Now N, = (4 ~E)NQ, and since N, is covered by a finite number of R,’s
thereisan msuchthat N, < |J;<, Q;. Thusifn = mthen for all k,R,, "N, = &
and R,, S AN Q,s0 R, S E; hence, 0, =cl(R,,) S E,so Q N (“2~E)yc U,.,, 0
But Q is a dense set and |J;.,Q; is closed, so taking the closure we get
® ~EcU;n0;, and since U, Q; is nowhere-dense, 2 ~E = (J, E = “2
and N =(A~E)NQ =& Thus ANQ=“2NnQ =Q,ie, A=2Q. Thus Q
is the least upper bound in & of {R,|n,k < w}. This proves Lemma 5 and
completes the proof of 2.3, and hence of 1.5, 1.3.

REMARK. Define I: 0 — & by I(n) = {x€“2| x(n) = 1}. Take 0,0",0,(n < w)
as in the example following 2.1 and define & accordingly (Q = {xe“2|3n
(Ym = n) (x(2m)=1)} etc.). The definition of Q, and the above proof show that

Q= "l//"g,[ where
Y = (Po AP2 APy AP ) VI(T1Po A Py A Py A Pg-+*)
V(T1p2 APy APs APg) V(TIPa ADs APy APio+)
V(TP A ) Ve,

Thus ¥ is a simple example of a B.t. over @ which is weakly defined in (&£,1) but
not equivalent to any strongly defined B.t.

3. The case of reduced valuations

We return to the consideration of valuations over an arbitrary fixed set D.
We shall use the equation [range (1)]5° = {| ¢|a.1| ¢ is strongly defined in
(#,1)}, which is true in every valuation (&, I). If the valuation is reduced, i.e.
% = [range ()]5”, we get that each b % has the form | ¢ || 5, and hence there
is a set T of B.t’s satisfying the following:

31. (1) T=2{p;]ieD}and T is closed under -1, A, v;
(2) each ¢ T is strongly defined in (%, I);
(3) foreachbed thereisa e T such that b = | ¢|4.;.

From now on let (#,1) be a fixed reduced valuation (over D) and T a set of
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B.t’sasin 3.1. Let

A1={¢€T|“¢“w.1=1}§ A2={VX|X§T: Vyex "‘ﬁHwJ:l} and
A=A, UA,.

Denote by € the normal completion of #. We shall first show that, in a sense,
A is a complete axiomatization of the theory of (%,I), and then use this result

(3.2) to show that every B.t. weakly defined in (£, 1) is equivalent to a strongly
defined one.

3.2. THEOREM. Under the assumptions and notations above, each B.t.
¢ satisfies:
Ao iff [dller=1.

ProOF. A is a set of B.t’s each of which has the value 1 in (4,1), hence in
(%, I). Therefore, by the characterization of * F*,if A F ¢ then | ¢
| = | is short for || - |4 ; in this proof).

Now suppose that ¢, is a B.t. such that AN ¢ and let (¢',1') be a valuation
such that ¢” is complete, | x| ¢-,;- = 1 for all ye A, and || @ ¢y # 1.

We assert that there is 2 complete homomorphism j: & — € given by j(|| ¢ | @.1)
= | ¢ |¢'.1- (¢ T), orin short, j(|| ¢[) = | |’ for e T.

To see that this equation defines a single-valued function note that if ¢, ye T
and “ d)“ = “ ¥ “ then (¢ o>y)eA; = A (because T is closed under -1, A, v,
hence under <), and hence ¢y | =1, [¢| =|v]|" Thus [¢| = |v|
= ¢|" = | ¢]|’ (for ¢, ¥ € T), and j is single-valued.

By 3.1(3)dom(j) = #. Since T is closed under =, A, Vv, jis a homomorphism
from # into €’. To prove that j is complete it suffices to show that if A = &,
V®A4 =1 then /¥ ,j(a)=1. But letting X = {¢peT||p|ecA} we have
(by 3.1(3)) 4 = {“ qS“ | e X} and so, if \/®4 =1 then (\/ X)eA, S A, hence
Vx| =1 But |VX| = Vx| o] = Vi@, so Vi) =1
Thus j is complete, and we can use 1.2 to extend it to a complete homomorphism
J: %%’ Forany ie Dwe have J(I() = J(| p:|) =i(| s ) = | i | = I'(i),
hence I' = Jo I. By 1.1 we conclude that | ¢ | = J(||¢|) for every B.t. ¢.
Now, (%, I') has been chosen such that | ¢, ||’ # 1. Hence | ¢ [ # 1.

We have thus shown that for any B.t. ¢, A ix ¢ = || ¢o |l a, # 1, completing
the proof of 3.2.

We are now ready to discuss weakly defined B.t’s. Suppose ¢ is weakly defined
in (#,I) and choose (by 3.1(3)) some Y eT so that |¢]¢; = |¥]as. Then

] = 1 (where
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|6 ~¥|e,r =1, hence by 3.2, A+ ¢ >y, which is equivalent to F(AA)—>(¢ < ¥).
Denotings = 7 AAweget: F o> (p o), hence F po(0 A P) v(Taay),
ie,d=(0Ad)v(ToAay).

By the definition of A, AA is strongly defined in (#,I) and has the value 1.
Therefore ¢ and — ¢ are strongly defined and so is y (because € T). Note also
that || o |4, = 0. If we can prove that ¢ A ¢ is equivalent to some B.t. t strongly
defined in (4#,1), we shall get ¢ = tv(—16 AY), and the Bt. T v (0 AY)is
strongly defined. Therefore, the proof of (*) of §1 for the reduced valuation
(4,I) will be complete if we prove the following lemma.

LeMMA. Let o be a B.t. strongly defined and having value 0 in (%,1). Then
for each B.t. ¢ there is a B.t. T strongly defined in (#,I) such that 6 A ¢ = 1.

Proor. By induction on ¢. If ¢ is atomic take 7 = o A ¢. Next suppose
¢ = 71 ¢, . By theinduction hypothesis, there is some good 7, = ¢ A ¢, (“good”
means strongly defined in (4,I)). Take 7 = 6 A 717;. Then 7 is good and
T=06ATI(0AD) =0 A

Now consider the case ¢ = \/ X. By the induction hypothesis, find for each
YeX agood 7, =0 Ay Then 6 A = \/yx(o6 AY) = \/y.x7y, and take
T = Vyx 7, Since for each y 7, is good and 7, A ¢ =1, we conclude that for
each ¥ | 7, [|4.; = 0, s0 7is good too and t = ¢ A ¢.

If $ = A X then ¢ =1/, .x ¥, and we can find 7 by going back to the
previous cases (or directly). This completes the induction, and hence the proof
that every reduced valuation satisfies (*) of §1.

4. Proof of 1.4

Consider a valuation (#,I) and denote %, = [range (I)]3*, € = normal
completion of &, %, = normal completion of %,. Suppose that (%, I) is a regular
valuation. Then the inclusion embedding of %, in # is complete, and by 1.2 it can
be extended to a complete embedding of €, in €. We can identify €, with its image
under this embedding and so assume that %, is a regular subalgebra of % in which
%, is dense.

Thus we have

B
.@/
\% At

0
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where each arrow is a complete inclusion-embedding.

It is easy to see (without using regularity) that [range (I)]a,” = %,, so that
(%,,1) is a reduced valuation.

Let ¢ be a B.t. weakly defined in (%,I). Thus | ¢ |4 ;€. But %, is a regular
subalgebra of € and is complete s0 | ¢ [€o,;€%, and | ¢ [%o,; = | ¢ [ %0,

LemMAa. ZNE, = H,.

ProOF. We need only prove that be#ZNE€y=beB,. Let beBNE,.
Since %, is dense in %, there isan A < #, suchthat b = \/ 4 = \/ ¥4 = \/®4.
But %, is a < co-subalgebra of # so be 4, .

Returning to the weakly defined B.t. ¢ we sce that |¢|¢; = || ¢]¢, €%
NEy = H,, so ¢ is weakly defined also in the reduced valuation (%,,I). By §3
there is a B.t. i strongly defined in (%,, I) such that ¢ = V. Since &, is a regular
subalgebra of &,  is strongly defined also in (%,1), by 1.1. This proves that
(4,1) satisfies (*) of §1.

5. Concluding remarks

Let (4, I) be a valuation, and denote &, = [range (I)]45 ®, %=normal comple-
tion of #and €, = [B,]¢" = [range (I)]¢ ©. It is easy to see that %, is a normal
completion of &, iff (#,1) is regular (for one direction, see §4). Our counter-
example in §2 worked because in that case Z#N ¥, 2%, (in the notation of §2,
B=5F,By=[{Pps| myn<w}]s° <&, and Qe%, because Q = \/E A\EP,,.)-
Generally, when & N¥%,= %, one can find a B.t.  such that [y |, ,eZNE,
~ %, and so y is weakly defined in (£, I), but every strongly defined ¢ satisfies
”45“%’.1 = ” ¢”%.1€‘@0 and 50 ¢ # Y.

The following questions naturally present themselves:

1) Find a simpler example of a valuation (%, I) (over a countably infinite set)
with the property that Z# N ¥, # %,. It is not excluded that & have the isom-
orphism type of # of §2, but the description and the proofs of the properties
may perhaps be simplified. (Note that it is trivial to find a field of subsets of a
countable set isomorphic to° Z: let X =2 be a countable set that intersects
every nonempty member of #, and let #' = {ANX ] AeF})

2) Find an example, or prove there is none, of a valuation (%, 1) such that
BNEy =%, and yet there is a B.t. ¥ weakly defined in (%, I) which is not
equivalent to any strongly defined one.
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3) Find a necessary and sufficient condition for a valuation (%, 1) to satisfy
(*) of §1.
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