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ABSTRACT 

A problem of Gaifman about strongly and weakly defined Boolean terms is 
solved by finding a Boolean algebra ~ with a complete subalgebra 8 such 
that some element of~" not in d' can be obtained from elements of 8 by meets 
and joins in the normal completion of .~'. 

Introduction 

In this paper we solve a problem posed by Gaifman in his paper [1, w 

Roughly speaking, the problem is as follows. Let & be a Boolean algebra, cg its 

normal completion, and I an assignment of  values in & to some variables. Let ~O 

be a Boolean term on these variables (i.e., constructed from them by the unary 

operation --1 and the infinitary operations A, V), and suppose that the value o f  

as computed in cg under the assignment I (interpreting -7, A, V as complement, 

meet and join in cr turns out to be an element of  &. Does there always exist a 

Boolean term ~b such that (1) ~b is equivalent to ~k, and (2) q~ is defined in (~ , I )?  

Part (1) means that q~ and ~ get the same value in all assignments into complete 

Boolean algebras. Part (2) means that the value of  q~ under I can be computed 

directly in &, so that all meets and joins needed in the process exist in &. 

In w we give an example showing that such a q~ need not always exist. But in 

w we prove that the answer is affirmative if we restrict ourselves to pairs 

(&,I)  satisfying a simple regularity condition. A more precise statement of  the 

problem and results is given in w where the basic terminology and notations 

concerning Boolean terms are explained. 
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Our set-theoretical notations are standard: ~ ,  n ,  u ,  n ,  u are the usual 

operations on sets. A field of  subsets of  X is, by definition, a set o~ of  subsets of  X 

such that X e oar and A, B e o~- => X ~ A, A n B, A u B e o~. For us, 2 = {0, 1 } 

and ~o = {0,1,2,3,.-.}. 

The symbols -% A, V, A, V, are used either to denote the operations of  a 

Boolean algebra (and then we often write -7 ~,/~e~, V ~), or as symbolic operations 

(connectives) on Boolean terms. V, 3 are sometimes used as abbreviations of  

English phrases (for all, there exists). 

The main results of  the paper, which is a part of  the author's Ph.D. thesis 

prepared at the Hebrew University of  Jerusalem under the direction of  Prof. H. 

Gaifman, were announced in [3]. I wish to thank Prof. Gaifman for his interest 

and advice throughout the work. 

The paper can be understood by any reader having an elementary knowledge 

of  Boolean algebras and topology. 

1. Preliminaries and formulation of the problem and results 

Our terminology and notation differ slightly from Gaifman's. Let D be a fixed 

set (in [1] D is taken as an ordinal 6). Consider variables Pi, i e D, which will 

assume values in arbitrary Boolean algebras. The Boolean terms (B.t's) over D 

are defined inductively by: 

pi is  a B.t. for i e D ;  

if ~ is a B.t. then --1 ~b is a B.t.; 

if  X is a set o f  B.t's, then A X and V X are B.t's. 

One defines ~ b A ~ = A { ~ b , r  ~ b v ~ =  V{q~,r ( q ~ ) = - n ~ b  v r  

(q~ ~ 0) = (~ --' O) ^ (0 --' ~). 
A valuation over D is a pair (M,I) consisting of  a Boolean algebra (B.a.) N and 

a function I:  D-~N.  D will usually be fixed and all B.t's and valuations are 

understood to be over D. One is tempted to define the value IJ ~b II = II ~ lb,, of a 

B.t. in a valuation by the following equations: 

Pi = I(i) for i e D ;  

11 ~ ~,11 = - '  ~ll 0 II; 

II A x II = A ~ox II ~' I1 and dually for VX. 

If  & is complete, these equations determine a value in & for each B.t. In the 

general case we may agree that q~ is not defined in (N, I) when the computation 
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of ]l ~b [l~.~ by means of the above equations fails at a point because some meet or 

join does not exist in ~'. If  ~ is defined in (~ , I )  then [1 ~b ][~L is a certain element 

of ~ ,  and we say for emphasis that ~ is strongly defined in (~, I). An exact de- 

finition by induction on ~b is left to the reader. 

1.1. LEMMA. Let ~1 ,~2 be B.a's, I: D -~ ~ and h a complete homomorphism 

of ~ l  into ~2. I f  the B.t. ~ is strongly defined in (~1,I), then ~? is strongly 

defined in (~2, h oi), and h( H c~ 1i~1.I) = II ~b [l~2.ho , .  

PROOF. Obvious by induction on ~b. 

Recall that ~ is called a regular sulca~gelcia of .~2 Mc.r it is a sul:algd:ra 

and the inclusion embedding of  Nx in ~2 is complete. A subalgebra &l of &2 is 

called dense when every b e M2 is a join in ~2 of  members of ~ .  Every dense 

subalgebra is regular. By a normal completion of N we mean a complete B.a. c~ of 

which N is a dense subalgebra. A well-known theorem (see [2, w states that 

every B.a. N has a normal completion, and if g'l, if2 are normal completions o f&  

then an isomorphism of g't and ~2 exists which acts as the identity on ~ .  

We shall use the following known property of the normal completion: 

1.2. Let ~ be a B.a., c~ a normal completion of ~ and ~'  a complete B,a. 

Every complete homomorphism j: N ~ c~, has a unique extension to a complete 

homomorphism J: ~ ~ ~'. If  j is one-one, so is J. 

PROOF. For any c e g' let R c = {x e ~ ]  x =< c}. Define J by J(c) = V ~)"Rc 

for any ceT .  Using the facts that x e R o  y ~ R - , c ~  (x ^ y  = 0 in N) and that 

V~(Rc ~ R ~ )  = 1 for all c e~ ,  one easily concludes that J preserves comple- 

ments. Now suppose that c = A ~r A(A ~_ c~, c e c~). Then in ~', J(c) = V j"Rc 

while Aa~AJ(a)= A,~.~Vj"R .. But a e A ~ c < = a ~ R ~ c _ _ R , ~  J(c) <= J(a) 

so clearly J(c) <= A , ~ J ( a ) .  To prove equality it suffices to prove that in ~ ' ,  

J(c) v --1 A,~A J (a )=  1, i.e., J(c) v V , ~  J(-n a) = 1; equivalently, 

Vj"(R~wU,~R_~,)  = 1. Since j is complete it is enough to show that 

V~(R~w U , ~ R - , , ) =  1, but this is true because N is dense in ~ and 

c v V,  ~a--1 a = 1 in g'. Thus d preserves arbitrary meets, and hence is complete. 

The uniqueness of J is obvious. 

I f j  is one-one so is J because if c e ~ ,  c r 0, then there is some xeRc  such 

that x r 0, and so J(c) > j(x) > 0. This completes the proof. 

Let us say that a B.t. ~ is weakly defined in the valuation (~ , I )  when [] ~ ~ 

where ~ is any normal completion of ~ (the choice of c~ does not matter because 

cr is essentially unique). 
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Note that by 1.1, if ~b is strongly defined in (&,I)  then II I1 ,i = 11 II ,, 
(ff being the normal completion of  &) and so ~b is weakly defined. When D is 

finite every B.t. is strongly, hence weakly, defined in every valuation over D. 

But when D is infinite it is easy to find valuations in which some B.t's are weakly 

but not strongly defined. 

Let r ~ be B.t's. We write r = ~ and say that r ~k are equivalent when 

I1 11 -- H 11 in every valuation in which both are (strongly) defined; equivalently, 

11 11 = 11 11 in every valuation (M,I) such that & is complete. When ~b = A 

(i.e., It'll -- 1 always) we write F- qg. More generally, let F L){~b} be a set o f  

B.t's. We write F t- q~ (read: ~b is a (Boolean) consequence of F) when t- /~ F ~ ~b; 

equivalently, when I1 11 = i in every valuation (&,I)  such that & is complete 

and I1 ~ [1~I = 1 for all ~ ~ F. We shall use only some obvious properties of  the 

relation L-. 

Given a subset A of a B.a. & we let [A]~ ~ be the smallest C ~ A such that C 

is the underlying set o f  a < ~-subalgebra (also called complete subalgebra) 

of  &; i.e., such that C is closed under ~ and under all meets and joins existing 

in M. We shall usually identify subalgebras with their underlying sets when the 

common superalgebra is fixed. Note that a < oo-subalgebra & of  a complete 

B.a. ff is a regular subalgebra of  if, and is complete as a B.a. in itself. 

This completes the general preliminaries. The problem posed by Gaifman was 

whether (*) be'.ow is true for all valuations (&,l) .  

(*) For  every B.t. ~k weakly defined in (~ ,1)  there is a B.t. ~b such that 

q~ = ~b and ~b is strongly defined in (M,1). 

The question depends on the set D (Gaifman's 6) over which B.t's are con- 

sidered, and the answer is obviously affirmative for finite D. 

Our first main result is that when D is infinite (*) is not always true. 

We shall prove this for D = 09 x 09 (so that the variables are Pmn ; m, n < 09), 

but since every infinite set has a countably infinite subset it is not hard to con- 

clude that (*) is sometimes fales for every infinite D. Specifically we shall prove: 

1.3. THEOREM. There is a valuation ( ~ , I )  over co • 09 in which the B.t. 

Vn AmPm, is weakly defined, but no B.t. equivalent to it is strongly defined. 

Our second main result is that (*) is true when the valuation (&, l )  is regular: 

A valuation (~,1)  is called reduced when & is generated in the < oo-sense by 

range (I), i.e., g = [range (I)]0~ ~~ . ( g , I )  is called regular when Irange (I)]~ ~176 is 

a regular subalgebra of  M. Clearly every reduced valuation is regular. 
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1.4. T~OREM. I f  (~ , l )  is a regular valuation then it satisfies (*). 

Theorems 1.3 and 1.4 are the main results but we shall prove Theorem 1.3 

via the following assertion which is of interest in itself. 

1.5. There exists a B.a. ~ with a < oo-subalgebra 8, elements Pmn (m, n < co) 

of 8 and an element Q of ~ such that Q q~ S but the equation Q ~ = Vn AmPmn holds 

in the normal completion c~ of .~. 

(The proof will give ,,~ as a field of sets and r as a subfield.) 

To get 1.3 from this, define the valuation (&,l) as follows: g = : - ,  and 

I: co x co -~ ~,~ is defined by I(m, n) = Pmn" Let :~ be the normal completion o f g .  

Then by 1.5, the B.t. ~ /=  Vn/~mPmn has the value Q in (:~,1) and so is weakly 

defined in (g , I )  since Q ~ g .  But let ~b be any B.t. strongly defined in (~,I) .  

Then clearly II tp 11~,~ e since r _ [range (I)]~ ~~ and so 11 11 .,= I1 11 , Q; 
hence, q~ ~ ~, proving Theorem 1.3. 

In w ~,~" praez I. 5, w caatains the proof of  Theorem 1.4for reduced valua- 

tions, and w proves Theorem 1.4 in the general case of regular valuations. 

2. Example of a field of sets 

We shall consider fields of subsets of the space '~ = {x] x: co --+ 2}. A basic set is 

one of the form B = {x ~'~ (Vi < n)x(i) = 6,}, where (6, l i < n> is any finite 

sequence of zeros and ones. An elementary set is a finite union of basic sets. 

The collection 8 of all elementary sets is a field (of subsets of'~ An open set is 

a (countable) union of basic sets. This makes ~'2 a topological space (the Cantor 

space), in which the closed sets are the intersections of sequences of  elementary 

sets, and el(A)= ("1 { E IE ~ d ~ E ~_ A} ("el" is the closure operation). Recall that 

a closed set is nowhere-dense iffit has no interior points, and that a perfect set is a 

closed nonempty set having no isolated point. 

To prove 1.5 we shall make use of sets Q,Q',Qn(n < co), Rnk(n,k < co) (all 
subsets of~ satisfying the following. 

2.1. (1) Q =  U , Q n a n d Q ' = ~  

(2) for each basic set B, Q :~B and Q' n B  are uncountable; 

(3) the sets Qn are perfect, nowhere dense and pairwise-disjoint; 

(4) for each fixed n, the sets Rnk are countable, pairwise-disjoint and 

satisfy cl(Rnk ) = Qn. 

We begin by showing the existence of sets satisfying 2.1. It is not hard to see, 

using Baire's category theorem, that if Q is any dense set which is the union of  a 
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sequence of perfect nowhere-dense sets, then Q', Q,,Rnk(n , k < co) can be found so 

that 2.1 holds. But the quickest way is to give a particular example. Let 

Q = {x6~ 3n(Vm > n) (x(2m) = 1)}, Q ' =  '~ ~ Q, Qo = {xE'~2IVm(x(Era) 

= 1)} and for n > 0, 

Q, = {x ~ 2 [  (Vm > n) (x(2m) = 1) and x(2n - 2) = 0}. 

Then (1)-(3) of  2.1 are easily verified. Next let: 

R,R = {x ~ Q,I the sequence (x(1), x(3), x(5), x(7),---) 

has a tail of  the form 0.-. 010... 010... 01-.- where in each block 0 occurs (con- 

secutively) k times). 

Then 2.1(4) holds too. 

From now on we consider any fixed sets Q, Q' etc., so that 2.1 holds. Since the 

sets Q, are closed, each has the form Q, = ('l,,Pm, where Pm,6g  for all m,n. 

Thus Q = U .  AMP,,,. 

Let ~,~ be the smallest field of  subsets of  ~'2 that contains all elementary sets, 

Q and R,k for all n,k. In order to prove the assertions of  1.5 (of course, ~ and ~- 

are regarded as B.a's with the set operations ~ ,  n ,  u so that =< coincides with 

set-inclusion) we need only prove the following (note that Q ~ r  this is clear 

from 2.1). 

2.2. r is a < oo-subalgebra of  ~-. 

2.3. Q = V ~ / ~ P z ~  where ~ is the normal completion of~- .  

We begin with the proof of 2.2. Let R be the ideal in ~- generated by 

{R,k] n, k < co}, and for A, B z ~ write A ~ B for: A is congruent to B modulo .~, 

i.e., the symmetric difference A A B can be covered by a finite number of  R,k'S 

(and hence is countable). 

LEMMA 1. For each A z . ~  there are E , E ' z r  such that A n Q ~ E n Q  

and A n Q '  ~ E' RQ, .  

This is easily proved by induction on the generation of  A by ~ ,  r3, u from 

t3 {Q} u {R,k I n, k < co}. The following lemma contains the heart of  the proof 

of  2.2. 

LI~MMA 2. I f  {E~ ] n < co} ~_ ~, A ~ ~ and A is the meet in ~ of 

{E, ] n < oJ} U { Q}, then there is an E E 8 such that E = / ~ o ,  E, and A = g n Q. 

PROOF. By Lemma 1 we can choose E ~ d ~ so that A n Q ~ E n Q. Bu't A _~ Q 

so A ~ E n Q .  Put N ~ = ( E n Q ) ~ A ,  N 2 = A ~ ( E n Q ) .  Then N~,N 2 are 
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countable and e ~ .  Now A ~ _ ( E n Q ) ~ N x  = E N ( Q ~ N 1 )  , and by 2.1(2) 

Q "~ N1 intersects every basic set. Therefore cl(A) _ cl(E n (Q ~ N1) ) = E. But 

A ~ E, for all n, hence cl(A) ___ ~ . E ,  (since N . E ,  is closed), and so E ___N,E,. 

Thus E is a lower bound in 8 of  {E, I n < 09}. Let E' E ~ be another lower bound. 

Then E '  n Q is a lower bound in o~ of  {E. I n < m) u {Q), hence E' n Q ___ A. 

But A _ (E N Q) u N2, so E' N Q ~ (E n Q) t.) N2, (E' ~ E) n Q ~_ N2. But by 

2.1(2) Q intersects each nonempty open set in an uncountable set, whereas N2 is 

countable. Therefore E' , - ,  E = ~ ,  E ' _  E. This shows that E is the greatest 

lower bound of  {E.I n < 09} in g. 

To complete the proof  of  the lemma we must show that A = E n Q, i.e., that 

Na = Nz = Z .  Since E t~Q is a lower bound in ~ of  {E.ln < co) u {Q}, 

E ~ Q  ~ A. Hence N 1 = ~ and A = ( E  A Q )  u N 2 .  Since A _  Q and 

N2 = A ~ (E n Q) we see that N2 ~ Q and N2 is disjoint from E. Also 

N 2 c - A ~ - N n E . .  

We shall now find the general form of  elements o f ~ .  Let S be a finite union of  

Rnk'S. Consider any A e ~ .  By induction on the generation of  A from 

gk)  (Q}t3 {R,,k] n,k < 09} 

it is directly seen (noting the disjointness of the R.k'S) that S c~ A is a finite union 

of  sets of  the form R.k n E (n, k < 09, E e r I fA e ~ then for some S as above, 

A = S n A  and therefore A has the form Ui<m (Rn,k, nEi )  where m < 09, and 

for i < m: ni, ki < 09, E i e ~. Conversely, every set of  this form is (of course) in ~ .  

In particular put N 2 = Ui<,,,(R.,k, nEi)  with m etc. as above, and suppose 

for contradiction that N2 # ~ .  Without loss of  generality, m > 0 and 

R.oko n Eo ~ ~ .  Combining this with the above properties of  Nz we get: 

~: R.oko n E o c_ N2 - ( n .  E.) n Q n ("2 ~ E). Let k < co be larger than ki 

for all i < m. Then Rnok is disjoint from R.,k, for all i < m and hence from N 2 . 

Also cl(R.oko) = cl(R.ok) ----- Q.o, hence cl(R.oko n Eo) = cl(R.ok n Eo) = Q.o n Eo 

(because Eo is open and closed). Now, ( n .  E.) n (~2 ,-, E) is a closed set including 

R.oko n Eo, hence it includes also R.okC~Eo. Moreover, R.oko n Eo ~ ~ 

cl(R.o k n E o ) # ~ = > R . o k n E  o : ~ ,  and R.ok--CQ.o-- Q" Thus, ~ ~R.ok 

n E o  - (N.E~ n Q n(~2 ~ E). We see that R.ok n E o  is a lower bound in o~ of  

{E.[ n < co} U {Q} which is nonempty and disjoint from E and from N2. But 

A _c E u N2, so R.o k n E o is disjoint from A, and A U (R.ok n Eo) is a lower 

bound of {E. [ n < co} w {Q} which is strictly greater than A, in contradiction to 
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the assumption of Lemma 2. Thus N2 = J~, A = E n Q and the proof of the 

lemma is complete. 

LEMMA 3. Like L e m m a  2 with Q replaced by Q'. 

PROOF. In the proof of  Lemma 2 up to the point where it is concluded that 

N1 = ~ ,  write everywhere "Q" '  for "Q".  The resulting argument is valid as it 

stands. We conclude that A = (E n Q') u N2 where N2 e &. But A _ Q', hence 

Nz --- Q'. On the other hand N2 is included in a union of R.k'S, so N2 --- Q, and 

thus N2 = EI since Q' = ~ ~ Q. This completes the proof 

The proof of  2.2 is now easy. g is a subfield, hence a subalgebra, of.~z'. To 

see that it is a < m-subalgebra, it suffices to prove (remembering that 8 is 

countable) that if {E. I n < co} ~ g, A ~ ~- and A = /~. E., then A ~ r But if A 

is the meet in ~- of  {E. I n < o~} then A n Q is the meet in ~- of {E. ] n < o~} W {Q} 

and A n Q' is the meet of  {E.I n < ~} u {Q'}. By Lemmas 2 and 3 the meet 

/~s E. exists (call it E) and satisfies A n Q = E n Q, A n Q' = E n Q', and 

h e n c e A = E s S .  Q . E . D .  

To prove 2.3 let c~ be the normal completion o f~ ' .  Recall that the sets Pro. e 8 

have been chosen so that for all n, Q. = AmPmn. Put q. = A~P,.. and let us 

"compute" q. (since ~r is a dense subalgebra of ~', each member c of cg can be 

represented by a subset of  .~-, namely by {x e oaVlx < c}; computing c means 

finding this set): 

{ A e ~ I A  < q,} = { A e ~ I V m ( A  c_ emn)} = {Ae~Z'[ A c Q,}. 

LEMMA 4. For any A e ~ ,  A ~ Q, iff for some m, A ~_ Uk<mR,k . 

PROOF. Since Uk<mR,k_ Q, always, one direction is trivial. Now let A e~ ' ,  

A _ Q,. By Lemma 1 there is an E e 8 such that A n Q ,,~ E n Q. But A _ Q so 

A ,~ E n Q. As in the beginning of the proof of Lemma 2, this implies cl (A) _ E. 

But Q, is closed and _ A; hence, Q, _ E. Since Q, is nowhere dense, E = J~, so 

A ,~J~. Thus A is covered by a finite union R,oko k3 ... u R , , k U  .... But when 

ni # n we have R,,k, C7 A c_ Qn, ~ Q, = ~ ,  hence A is covered by a finite union 

of  sets R,k. Q . E . D .  

It is worth noting that by Lemma 4 (or by 2.2) Q, ~ ~" for each n. 

V * { A e ~ ' I A  c Q,} = V~Rnk. Returning to q. = An Pmn we see that q. = 

R g~kRnk we get Q = Hence V~q. = V.,k .k" If  we prove that Q = shall V .q .  

= /~mPm., proving 2.3. Since .~ is a regular subalgebra of  f~ it suffices to 

prove: 
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LEMMA 5. Q = V,.kR,k" 

PROOF. Q D_ R,k for all n, k. Now let A e.~,  A ~_ R,k for all n, k. We shall 

show that A ~ Q. By Lemma 1, there is an E e 8 such that A c~ Q ~ E n Q. Let 

N1 = ( E ~ Q ) ~ ( A ~ Q )  and N 2 = ( A ~ Q ) ~ ( E n Q ) ,  so t ha tNi ,  N2 e ~ .  

Since R,k c_ A for all n,k it follows that N1 - A, hence N1 ___ A n Q, N, = ~ .  

Now N2 = (A ,-, E) c~ Q, and since N2 is covered by a finite number of Rnk'S 

there is an m such that N2 g Ui<,,Q~.Thusifn > mthen for all k,R,k n N 2  = 

and R,k ~-- A n Q, so R,k c_ E; hence, Q, = cl(R,k) -- E, so Q n (~ ~E) g U~<,~ Qi. 

But Q is a dense set and U~<=Q~ is closed, so taking the closure we get 

'~2 ~ E _  Ui.:,~Qt, and since U~<r, Qt is nowhere-dense, ~2 ~ E = ~ ,  E = ~ 

a n d N 2 = ( A ~ E )  c ~ Q = ~ . T h u s  A n Q = ' ~ 2 n Q = Q , i . e . , A _ Q .  ThusQ 

is the least upper bound in ~" of I n, k < m}. This proves Lemma 5 and 

completes the proof of 2.3, and hence of 1.5, 1.3. 

REMARK. Define I: co~ 8 by I(n) = {xe~ x(n) = 1}. Take Q,Q',Q,(n < co) 

as in the example following 2.1 and define ~- accordingly (Q = {xe~2]~n 

(Vm > n) (x(2m) = 1)} etc.). The definition of  Q, and the above proof show that 

Q = II ~k ll~,r where 

I// = (Po A P2 A P4 A P6"" )  V ( "1 P0 A P2 A P4 A P6"" )  

V(-"lp2 Ap4  AP6 Ap8" . ' )  V( ' - ' Ip4 AP6 APs  A p l 0 " " )  

v ( ' 7 p 6  ^ . . . )  v . . . .  

Thus ff is a simple example o f a  B.t. over co which is weakly defined in ( ~ , I )  but 

not equivalent to any strongly defined ]3.t. 

3. The case of  reduced valuations 

We return to the consideration of valuations over an arbitrary fixed set D. 

We shall use the equation [range (I)]~ ~ = I1 ,,I is strongly defined in 

(~,I)}, which is true in every valuation (&,l). If  the valuation is reduced, i.e. 

= ['range (1)l.~ ~ , we get that each b e d  has the form 1[ ~ I ]~  and hence there 

is a set To f  B.t's satisfying the following: 

3.1. (1) T _ {Pi[ leD} and T is closed under --1, A, V ; 

(2) each qb e T is strongly defined in (~', I); 

(3) for each b s &  there is a ~be T such that b = [1 ~ 

From now on let (&,l) be a fixed reduced valuation (over D) and T a set of 
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B.t's as in 3.1. Let 

A,={4~r l I I4 I I~ ,=I } ;A~={VXIX~-T ,  V,o,  [Ig, ll~,,=l} and 

A = A1 WA2. 

Denote by c# the normal completion of &. We shall first show that, in a sense, 

A is a complete axiomatization of  the theory of (~,I), and then use this result 

(3.2) to show that every B.t. weakly defined in (~,I )  is equivalent to a strongly 

defined one. 

3.2. THEOREM. 

4 satisfies: 

Under the assumptions and notations above, each B.t. 

A F ~ iff I[~[l~,, = 1. 

PROOF. A is a set of B.t's each of which has the value 1 in (~,I) ,  hence in 

(c~,i). Therefore, by the characterization o f "  b ", if A I- 4 then H 4 II -- 1 (where 

/I'll is short for I I  II~z in this proof). 

Now suppose that 4o is a B.t. such that A ~ 4o and let (~', I') be a valuation 

such that rg, is complete, II x lip'.,, = i for all Z e A, and II 4o lip,,,, ~ 1. 
We assert that there is a complete homomorphism j: ~ ~ r#, given by j( [] 4 [] ~,,) 

= ]l 4 H~e'.r ( 4e  T), or in short, j([] 4 II) -- 114 I1' for 4E T. 
To see that this equation defines a single-valued function note that if 4, ff e T 

and 11411 --I[~'11 then (4+-,~)eA1 ___A (because T is closed under --1, ^ ,  v, 

hence under ~--,), and hence 114'-'~, I1' = 1, 1[ 4 I1' = I1 ~ I1'. Thus II 4 II - II~ If 
I[ 4 ~' = I1 ~ IJ' (for 4, ~' ~ T), and j is single-valued. 

By 3.1 (3) dom(j) = .~. Since T is closed under -1, ^ ,  v,  j is a homomorphism 

from ~ into r To prove that j is complete it suffices to show that if A _~ ~ ,  

V ~ A =  1 then V ~ a j ( a ) = l .  But letting x - - { 4 ~ r l l l 4 l l ~ a }  we have 
(by 3.1(3)) A = {1141114~x} and so, if V~A = 1 then (VX)eA2 _A,  hence 

II v x 11' = 1. But II v x I1' = V L x  II 4 I1' ~' �9 a - - -  = V ~ a J ( ) ,  so Vff~'aj(a) 1. 

Thus j is complete, and we can use 1.2 to extend it to a complete homomorphism 

J: g ~ r For any i e D we have J(I(i)) = J( II p, I1) -- J(II p, II) - [I p, II' --- r (0 ,  
hence I ' =  Jo I. By 1.1 we conclude that 114ll' -- J(l1411) for every B,t. 4. 

Now, (T, I ')  has been chosen such that II 4o I1'~ L Hence II 4o II ~ 1. 

We have thus shown that for any B.t. 40, A 1~ ~bo => Jl 4o h ,  ~ 1, completing 

the proof of 3.2. 

We are now ready to discuss weakly defined B.t's. Suppose 4 is weakly defined 

in (&,l) and choose (by 3.1(3)) some g, e T so that II 4 lip., -- II ~ l i s t  Then 
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[I(9 ~ l l ~ , i  -- 1, hence by 3.2, A F (9 ~ ,  which is equivalent to F (AA)~((9 ,~ ~b). 

Denot inga  = --1 A Aweget :  F --1 a ~ ( ( 9 ~ ) , h e n c e  F (9~( t r  A (9)V ( 7 3 ^ ~ ) ,  

i.e., (9 ---- (tr A (9) V ( ""1 O" A I~). 

By the definition o f  A, AA is strongly defined in (.~,I) and has the value 1. 

Therefore tr and "-1 a are strongly defined and so is ~ (because ~b e T). Note also 

that I1 I1 ., = 0 If we can prove that a A (9 is equivalent to some B.t. z strongly 

defined in (&, I), we shall get (9 = z v ( -7 a A ~), and the B.t. z v ( --1 tr A if) is 

strongly defined. Therefore, the proof  of  (*) of  w for the reduced valuation 

(~ ,  I) will be complete if we prove the following lemma. 

LEMMA. Let tr be a B.t. strongly defined and havin# value 0 in (&,l) .  Then 

for each B.t. (9 there is a B.t. z strongly defined in (~ , I )  such that tr A (9 =- z. 

PROOF. By induction on (9. I f  (9 is atomic take z = tr ^ (9. Next suppose 

(9 = -7 (91. By the induction hypothesis, there is some good zl - tr ^ (91 ( " g o o d "  

means strongly defined in (M,I)). Take z = a A--1 zl. Then z is good and 

- A ^ ( 9 , )  = a ^ ( 9 .  

Now consider the case (9 = V X. By the induction hypothesis, find for each 

~keX a good z~, = tr A r Then a A (9 --- V ~ x ( a  A r - V ~ x Z ~ ,  and take 

z = V , ~ x % .  Since for each ~k z,  is good and z~ A a = z , ,  we conclude that for 

each  II II , = O, so �9 is good too and z -- a A (9. 

If(9 = A X  then (9 =- --1 V~,~x-7 @, and we can find z by going back to the 

previous cases (or directly). This completes the induction, and hence the proof  

that every reduced valuation satisfies (*) of  w 

4. Proof of 1.4 

Consider a valuation (&,I)  and denote &o = [range (I)]~ ~176 , c~ = normal 

completion o f ~ ,  cr o = normal  completion Of&o. Suppose that (&, 1) is a regular 

valuation. Then the inclusion embedding o f&o in & is complete, and by 1.2 it can 

be extended to a complete embedding of  C~o in c~. We can identify c~ o with its image 

under this embedding and so assume that c~ o is a regular subalgebra of cr in which 

g o  is dense. 

Thus we have 

 o/1 
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where each arrow is a complete inclusion-embedding. 

It is easy to see (without using regularity) that [range (I)]~<o~176 = &o, so that 

(~o, I) is a reduced valuation. 

Let ~b be a B.t. weakly defined in (d , / ) .  Thus II But go is a regular 

subalgebra of g and is complete so II ~b Ilgo,, ego  and I1 Ilgo., = II llgo., 

LEMMA. d ~ g o  = d o .  

PROOF. We need only prove that b e d  n go :~ b ~ d o . Let b ~ d n go.  

Since :~o is dense in go there is an A _~ d o such that b = V ~~ = V ~A = V~A. 

But ~o is a < oo-subalgebra of d so b E ~o .  

Returning to the weakly defined B.t. q~ we see that I1 I1 , -- II II o, d 
go = do ,  so q~ is weakly defined also in the reduced valuation (~o, I). By w 

there is a B.t. ~ strongly defined in (&o, I) such that ~ - ~. Since &o is a regular 

subalgebra of d ,  ~ is strongly defined also in ( ~ , I ) ,  by 1.1. This proves that 

( d , / )  satisfies (*) of  w 

5. Conduding remarks 

Let (d, I) be a valuation, and denote d o = [range (/)]3 | g=normal  comple- 

tion o f d  and go = [ d o ] ~  co = [range (I)]~ ~o. It is easy to see that go is a normal 

completion of d o iff (:~,I) is regular (for one direction, see w Our counter- 

example in w worked because in that case d n go ~ ' o  (in the notation of w 

d = ~ , d  o = [{Pm~lm,  n < o ~ } ] ~ o ~ , a n d a ~ g o b e c a u s e Q  = V~ A r, Pm~)" ~ 

Generally, when d n go ~ ~o one can find a B.t. ~ such that I! I1 , d n go 
~ d o , and so ~k is weakly defined in ( d , I ) ,  but every strongly defined ~ satisfies 

II ~b I1~., = II ~b 11~, ~ do  and so q~ ~ ~,. 
The following questions naturally present themselves: 

1) Find a simpler example of a valuation (&, I) (over a countably infinite set) 

with the property that & n go r do. It is not excluded that & have the isom- 

orphism type of o~- of w but the description and the proofs of the properties 

may perhaps be simplified. (Note that it is trivial to find a field of subsets of  a 

countable set isomorphic to' o~: let X _~ ~2 be a countable set that intersects 

every nonempty member of ~ ,  and let o~-' = {A n X 1A ~ ~'}.) 

2) Find an example, or prove there is none, of a valuation (&,l) such that 

d n go = do  and yet there is a B.t. ~k weakly defined in (&,I) which is not 

equivalent to any strongly defined one. 
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3) Find a necessary and sufficient condition for a valuation (.~,I) to satisfy 

(*) of w 
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